S MAGNA STEVR

s for 1D Simulation in a 3D World

www.maghnasteyr.com




more value more car A\.\ MAGNA STEYR
KULI 6.0 - A 1D Simulation Tool

In Version 6.0 KULI is still driving "\ /" transient

simulation .

hvac

a mainly one dimensional
simulation tool.

This raises some
fundamental questions:

® |s KULI still ,state of the art“ ?
® |s KULI based on outdated technology ?
® |s there a use for 1D simulation in a 3D world ?

In the following we shall try to find answers to these questions...
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Is 1D Simulation Outdated?

Faster computers and better algorithms make 3d simulation more
and more feasible. Computational time goes down, while the
quality of the results improves.

But: + Computational effort is still quite high and requires
investment in expensive top level computers.

« Definition of precise boundary conditions, geometry
and meshes is still a lot of work, most of which cannot
be automated.

« Sometimes 3d results are simply not required for
answering specific questions.



more value more car A\.\ MAGNA STEYR
How KULI combines 1D and 3D Elements

As KULI is a 1d Tool, we get

Very short computation times: Usually some seconds
instead of several hours!

Where 1d simulation alone would not lead to sufficiently precise
results,

KULI offers the possiblilty to work with 3d data generated
by external tools, although KULI does not generate 3d
data itsellf.
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The Range of Application for 1D Simulation

1 dimensional simulation of course cannot replace 3d methods
where 3 dimensional results are required (e.g. the air flow in a
passenger cabin), but...

... Where one is only interested in 1d results (e.g. the exit tem-
perature of a cooler), the necessary precision can often be
obtained by basically 1d approaches.

Combining classical 1d (2d) methods with more advanced
strategies often leads to highly accurate results in comparatively
very short time!
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Modelling a Plate Heat Exchanger
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Requirements on a Plate Heat Exchanger Model

Requirements on the model are:

« The plate heat exchanger should be compatible to
other KULI components in design and interface.

« Only easily measureable data should be required.

It must be fully scaleable (dimensions, number and
configuration of the plates)

« Modelling and simulation have to work almost
completely automated.
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Required results are...

« Pressure loss
How much pressure is lost in the
media on both sides of the plate
heat exchanger?

» Heat transfer
How much heat is transfered from
one medium to the other? What
are the resulting exit
temperatures?
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Standard KULI Calculation Method

Characteristic lines approach:

Automatic Conversion

"

Measured Data Nondimensional
(unit dependent) Characteristic Line
Easy and direct Easily scaleable!
Input of measured (Operating points

data! and dimensions)
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Characteristic Lines Approach for the PHE

- Works well for the calculation of the pressure loss!

Based on a pressure loss characteristic line for one plate,
arbitratry configurations can be evaluated.

» Characteristic lines approach does not work for heat
transfer!

The plates can not be described independently from each
other, therefore scaling becomes very complicated and
imprecise.
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A Description Using Finite Differences

Q, ... Heat flow into cell
(Water) Qs Oil
Q, ... Heat flow from cell i‘ B —

(water) Q Q| 5
Q; ... Heat conduction from 2 A | 7 Water
oil (from above cell) —
Q, ... Heat conduction from Selected cell 1q, Oil
oil (from cell below)

Applying a stationary equilibrium condition yields:
Q,+Q;+Q,=Q,

—
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Advantages and Disadvantages of Finite Differences

Pro: - Makes temperature data available for the whole
cross-section of the plate heat exchanger!

« Direct calculation means that there are no
restrictions regarding scaling'

Con: « Successful calculation now requires information
on local heat transfer and flow properties as well!
This data is very complicated to obtain!
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Solution to the Problem

- The local heat transfer is described by a parameterized
function a(Par).

m n
a; —0+c-Rer -Prl.j

Par = {0, c,m, n}

« The measured data is then used to automatically determine
parameters, so that a(Par) describes the measured heat
transfer.

. By doing so we have completely described the finite difference
model for the plate heat exchanger without requiring additional
complicated data!
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An Optimization Problem

Formally writing this as:

Find parameters Par so, that

lim
|QCALCULATED (Par)— QMEASURED| —0

where Q ... total heat exchanged in the
plate heat exchanger.

We get an optimization problem!
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Usage of the Plate Heat Exchanger

1) The user has to specify geometry, configuration,
pressure loss data and heat data.

\

2) The automatic optimization process can be started when
all required input data is available. Calculation can take
several minutes.

\

3) With the parameters for the local heat transfer determined,
the plate heat exchanger can now be used in KULI!
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The KULI User Interface for the PHE
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A Simple Parallel Heat Exchanger Testbench

Simulation parameters

. 1 Water circuit
n TFPHE [D]

Ot In Out
3

Dmx-—”&}—:m —————————————— H?wrate |

- = Temperature |
1013 hPa-%- +{Pressure |
Ot

1.0 circuit
. TFHE

Out

Dmx-—”& }—-Dm —————————————— -—|M:ol_f|ow rate |

115 °C = - #={Temperature |
1013 hPa ¥ +{Pressire |
Out
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Scaling the Number of Plates

Exit temperature oil [C°]
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Measured Temperature Pattern of a Component
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Calibrating an Excel Model

r-——=-=" pvorage Suraco Tomperatre -
First the system is described in an o ST |
EXCEL model. - o )
I | .
Then the heat transfer coefficients : l i I\‘“: |
are calibrated using the measured : ° / i i EW :
temperature pattern . / No cooling air flow E Fan : Fan : Fan :

I - | ! e
.- P
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From Excel to a KULI Model

Convection Dependent pn Air Flow
|
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Verification of the KULI Model
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A Simple Example for a Concept Study

A specific cooling system contains
several components with certain
o _ dimensions (e.g. width or height).

If we can change some or all of
these parameters,

Which possible configuration
is the best?

Height
The easiest solution is to simulate
all possible configurations and
simply find out...

Radiator
Type
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The Difficulty Behind Case Studies

Let us assume that we have...

4 parameters

R which can each assume
20 different values.

This leads to

20% = 160.000

possible configurations!

We ‘ve got a problem!
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How Nature Solves this Problem

Slowly cooling down a fluid (random initial state) leads to
crystallization (energetically optimal final state).

Nature finds an optimal solution!
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Some Mathematics...

M MAGNA STEYR

Depending on the temperature,
the molecules move more or less.

This can lead to energetically
better or worse configurations.

For low temperatures, there

Is only enough energy for
changes ‘down’ to energetically
lower (=better) configurations of
the molecules.

If the cooling down process is
slow enough, an optimal
configuration is reached!

par,, = par,,, +rand(T)

dE = E(par,,)— E(par,,, )

_dE

prob (dE) = min(e T 1)

par%pardeal

> min
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Convergence of the Simulated Annealing Algorithm
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A KULI System Prepared for Draft Studies

‘ Farameters for Draft Studies: | ‘ Targets for Draft Studies:

Simulation parameters

YWe want to find a radiator height and width
so that the fluid temperature s as low as
possible, while the pressure loss in the
radiator is as low as possible as well.
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The Draft Studies Interface

General Data |

Path to Compaonents:|C:AProgrammesECSWULI 53000%\Data\Components

Path to Cooling systerms:|CAProgrammerECSWLULL 53000\Data\CoolingSystems Parameter ranges Can be
Cooling system:|ExDraftStudies. scs .
defined by:

Messages:

Input Values  Goto Teree vaue * A set of possible values
* An Interval with stepwidth
* Filenames

Check Input

Calculate This

';*' Radiator Height
1| Radiatar Width

type of data input

400
1000 450

o= Possible targets are:
a0 e Min or AbsMin

—y
5y}
=
[}

Target Values Goto Inpit Values * Max or AbsMax

o || 8] e T I * A target value
— » Smaller or larger than a

B e e limiting value

target value 20
-41 5994586 525745756 Abshinimum| Minimum 1000 400
-112,805883 76,5492093 =0 Minimurm 705 750

94 2417272 B9,5590458 AbsMinimum a0 510 400
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Conclusions

Let’s return to the question from the first slide:
Is 1d simulation outdated?

No, it is definitely not!

For many applications the required results do not justify the much
higher effort of 3d simulation. And due to much more complicated
boundary conditions, often 3d simulation cannot guarantee better
results a priori.

Especially in the area of optimization and concept studies 1d
simulation tools like KULI make important contributions to
ongoing innovations.
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