

# A Novel Approach to Tractor Cooling System Design

Malay K. Kar, Ph.D. John Deere Product Engineering Center Waterloo, Iowa, U.S.A.



# Why is this a Novel Approach?

- Because of flow down chart similar to CTQ
- Because of use of a Statistics in the analysis
- The analysis predicts the behavior of alternatives with statistical certainty
- The analysis encompasses the interaction effects of variables

# Why is this a Novel Approach

CTQ Flow Down for Cooling System

#### Variables in Cooling System Simulation

#### **<u>3 Ys and 60 Xs</u>**

Input Independent Variables:

Macro level: X's

1) Ambient Temperature 1

2) Heat Exchanger Geometry and Performance Data 55

- a) Width
- b) Height
- c) Depth
- d) Number of Rows of Tubes
- e) Total Number of Tubes
- f) Tube Cross Sectional Area
- g) Wetted Perimeter of Tube
- h) Direction of Internal Flow

i) Pressure Drop Vs. Internal Flow for specific entry and exit temperatures

j) Pressure Drop Vs. External Cooling Air Flow for Specific outside entry and exit temperature

k) Heat Transfer Data for conditions in i) and j) above



## Why is this a Novel Approach?

Variables in Cooling System Simulation

3)

Coolant Data 3

- a) Coolant Flow Rate for Radiator
- b) Coolant Mix Ratio for Ethylene Glycol/H2O constant
- c) Coolant Pressure
- d) Amount of Rejected Heat
- e) Type of Cooling Circuit constant

1

- 4) Fan Data
- a) Fan OD constant
- b) Number of Blades constant
- c) Hub Diameter constant
- d) Fan Flow Vs. Pressure Drop constant
- e) Fan Power at Various RPM constant
- f) Fan RPM
- 5) Front Grille

a) Pressure Drop Vs. Flow constant

6) Engine Compartment a) Pressure Drop Vs. Flow constant



# Why is this a Novel Approach?

**Critical to Quality and Dependent Variables** 

- a) Radiator Top Tank Temperature
- b) CAC Outlet Temperature
- c) Transmission/Hyd Cooler Inlet Temperature



#### Proposed Cooling System Model for a Tractor







### Statistical Approach

- 12 factors were used to create a matrix
- These are the variables that affect among others the top tank temperature, CAC outlet temperature, and the oil cooler entry temperature
- The variables are :
  - Ambient Temp Condenser width
  - Radiator width
  - Radiator height
  - CAC width
  - CAC height
  - OC width
  - OC height

Condenser wiah Condenser height Coolant flow Rejected heat Fan speed



#### Kuli Simulation Results

| A               | В                              | C          | D          | E                    | F          | G         | H                 | 1         | J         | К          | L        | M         | N        |
|-----------------|--------------------------------|------------|------------|----------------------|------------|-----------|-------------------|-----------|-----------|------------|----------|-----------|----------|
| <b>KULI COI</b> | <b>M</b> Interfa               | ace for    | MS Exce    | el l                 |            |           |                   |           |           |            |          |           |          |
|                 |                                |            |            |                      | -          | 0         |                   |           |           |            |          |           | -        |
|                 | CillZuliwork                   | Coolingous | tomolDonco | Tuintouor            | 0000 0.44  | 2         | tan KULI          | -         |           |            |          |           |          |
| KOLI ISUS FIIE  | ttt Change to Compat Directory |            |            | I MIUIOMet_0020_unit |            |           |                   |           |           |            |          |           |          |
|                 | Amb Tame                       | CAC M      | Directory  | Ded Mödth            | Ded Height | CONTRAHE  |                   | OC Medate | OC Hoight | Cool Flour | Dei Heet | For Prood | CAC Out  |
|                 | Amp_remp                       |            | CAC_neigni | Rad-Wildth           | Rau-neigni | CON-WIGH. | 2014-meign<br>275 | 700       | OC-Height |            | Rej_neat | ran_opeeu | CAC_OUL  |
|                 | 30                             | 500        | 300        | 000                  | 750        | 525       | 3/5               | /00       | 420       | 4.5        | 90       | 2000      | 04.104   |
| 44<br>20        | 47                             | 500        | 300        | 650                  | 750        | 600       | 450               | 820       | 500       | 6.0        | 157      | 2000      | 74.2918  |
| 1               | 38                             | 600        | 300        | 650                  | 750        | 500       | 450               | 820       | 420       | 4.5        | 98       | 2600      | 54.34997 |
| 1               | 47                             | 500        | 300        | 650                  | /50        | 525       | 3/5               | /00       | 500       | 6.0        | 157      | 2600      | 62.45888 |
| 3               | 38                             | 500        | 400        | 650                  | 750        | 600       | 3/5               | /00       | 500       | 6.0        | 98       | 2600      | 53.6446  |
| 2               | 4/                             | 500        | 400        | 650                  | 750        | 525       | 450               | 820       | 420       | 4.5        | 157      | 2600      | 63.16209 |
|                 | 38                             | 600        | 400        | 650                  | 750        | 525       | 450               | 820       | 500       | 6.0        | 98       | 2000      | 52,9993  |
| 3               | 47                             | 600        | 400        | 650                  | 750        | 600       | 375               | 700       | 420       | 4.5        | 157      | 2000      | 61.34613 |
| }               | 38                             | 500        | 300        | 920                  | 750        | 525       | 450               | 700       | 500       | 4.5        | 157      | 2600      | 61.1413  |
| 10              | 47                             | 500        | 300        | 920                  | 750        | 600       | 375               | 820       | 420       | 6.0        | 98       | 2600      | 69.26817 |
| 11              | 38                             | 600        | 300        | 920                  | 750        | 600       | 375               | 820       | 500       | 4.5        | 157      | 2000      | 59.29105 |
| 12              | 47                             | 600        | 300        | 920                  | 750        | 525       | 450               | 700       | 420       | 6.0        | 98       | 2000      | 67.60897 |
| 13              | 38                             | 500        | 400        | 920                  | 750        | 600       | 450               | 700       | 420       | 6.0        | 157      | 2000      | 58.85286 |
| 4               | 47                             | 500        | 400        | 920                  | 750        | 525       | 375               | 820       | 500       | 4.5        | 98       | 2000      | 66.50224 |
| 15              | 38                             | 600        | 400        | 920                  | 750        | 525       | 375               | 820       | 420       | 6.0        | 157      | 2600      | 50.72268 |
| 16              | 47                             | 600        | 400        | 920                  | 750        | 600       | 450               | 700       | 500       | 4.5        | 98       | 2600      | 59.74366 |
| 17              | 38                             | 500        | 300        | 650                  | 857        | 525       | 375               | 820       | 420       | 6.0        | 157      | 2000      | 68.52818 |
| 18              | 47                             | 500        | 300        | 650                  | 857        | 600       | 450               | 700       | 500       | 4.5        | 98       | 2000      | 75.26311 |
| 19              | 38                             | 600        | 300        | 650                  | 857        | 600       | 450               | 700       | 420       | 6.0        | 157      | 2600      | 55.24245 |
| 20              | 47                             | 600        | 300        | 650                  | 857        | 525       | 375               | 820       | 500       | 4.5        | 98       | 2600      | 64.39265 |
| 21              | 38                             | 500        | 400        | 650                  | 857        | 600       | 375               | 820       | 500       | 4.5        | 157      | 2600      | 55.46702 |
| 22              | 47                             | 500        | 400        | 650                  | 857        | 525       | 450               | 700       | 420       | 6.0        | 98       | 2600      | 63,11494 |
| 23              | 38                             | 600        | 400        | 650                  | 857        | 525       | 450               | 700       | 500       | 4.5        | 157      | 2000      | 53,38871 |
|                 | 1 24                           |            | 122        | 050                  | 0.57       | 000       | 075               | 000       | 100       |            |          | 0000      | 00.17005 |



#### Interaction Plots



### Interaction Plots





| Detriment |     |     | CAC in Front    | Benefit |     |     |  |  |
|-----------|-----|-----|-----------------|---------|-----|-----|--|--|
| TTT       | CAC | Oil |                 | TTT     | CAC | Oil |  |  |
|           |     |     | Fan RPM         | Y       | Y   | Y   |  |  |
|           | Y   | Y   | Rad. Wid.       | Y       |     |     |  |  |
|           | Y   |     | Oil cooler Wid. | Y       | Y   | Y   |  |  |
|           | Y   | Y   | Rad. Ht.        | Y       |     |     |  |  |
|           |     |     | Cond Ht         | Y       | Y   |     |  |  |
|           |     |     | Oil Cooler Ht   | Y       | Y   | Y   |  |  |
|           |     |     | CAC Wid         |         | Y   |     |  |  |
|           |     | Y   | Cond Wid        |         |     |     |  |  |
|           |     |     | Flow Rate       | Y       |     |     |  |  |
|           |     | Y   | CAC Ht          |         | Y   |     |  |  |
| Y         | Y   | Y   | Amb temp        |         |     |     |  |  |
| Y         |     | Y   | Amt Rej Heat    |         |     |     |  |  |

# Benefits of Simulation and Statistical Analysis



- Cooling system modeling and Simulation are used to create a matrix without running tests in the lab
- The results from analyses help to work upfront with the supplier to create a viable design
- A very cost effective approach to design where a lot of variables interact
- The results of analysis give an insight to the interaction effects which otherwise might have been difficult to visualize

# Benefits of Simulation and Statistical Analysis



- Optimization of design is possible
- Will help to reduce development time in the lab