International KULI User Meeting 2007

1D/3D Simulation on the Engine Room Cooling Performance of a Medium-Duty Commercial Truck

June 13th ~ 14th, 2007

HYUNDAI Motor Company Minho Kim, Jeonghwan Choi, Junghwan Lim

Agenda

- Motivation
- CFD Work Process
- Engine room configuration of a Medium-Duty Truck
- CFD Simulation
- CFD Simulation Results
- 1D Simulation
- 1D-3D Coupling Simulation
- Parameter study
- Summary and Conclusions

Motivation

Newly developing engine requires enhanced cooling performance

- Higher heat rejection by coolant
- Higher pressure and temperature for CAC inlet
- Improving Cooling Package Capabilities
- Efficient process integration of engine room thermal & flow analysis in the vehicle development stage
 - 3D simulation can show many details and give insight into flow behavior
 - It has long computation times and need a experienced engineer
- Request for increased accuracy in 1D Simulation results
 - A combined simulation of 1D and 3D techniques make sense and delivers results that highly reliable.

CFD Work Process

🕗 НҮШЛДАІ

Engine Room Configuration of Medium-Duty Truck HYUNDRI

• Cooling package Layout and specification

Item		Specification	
Max. Power(PS/RPM)		150/2500	
Radiator (W \times H \times T)		$517 \ge 600 \ge 45.5$	
CAC (W x H x T)		470 x 495 x 50	
A/C condenser		468 x 372 x 18	
E-Fan		Φ 321 x 4blade	
Size		Φ 500 x 7blade	
M-Fan	Drive ratio	1.34	
	Slip rate	9%	

CFD Simulation – Mesh Generation

🕗 НҮШЛДЯІ

• Inner volume mesh structure

Mesh configuration

CFD Simulation – Boundary Condition I

🕗 НҮШЛДАІ

Wind tunnel condition

lt	em	Boundary condition		
Inlet	region	Driving speed		
Outle	t region	Outlet condition		
Ground	L1 region	Slip wall		
Ground	L2 region	No-Slip wall		
Side & U	oper region	Slip wall		
Vehicle	e surface	No-Slip wall		
lt	em	Dimension (m)		
	L	48.9		
	L1	14.1		
	_2	34.5		
	W	14.8		
	H	11.3		

CFD Simulation – Boundary Condition ${\rm II}$

🕗 НҮШПОЯІ

Simulation Conditions	Data	Resource	Remark
Vehicle speed (KPH)	32 / 50	Given	
Environment temperature (°C)	24	Given	
M-Fan speed (rpm)		Given	
E-Fan speed (rpm)	2200	Given	
Coolant inlet temperature (°C)		Simulation result	To find ACT
Coolant mass flow rate (LPM)	230	Given	
Charged air inlet temperature (°C)		Given	
Charged air inlet mass flow (kg/h)		Given	
Charged air outlet temperature (°C)	-	Simulation result	To find IMTD
Condenser heat rejection rate (W)	9256.9	given	Heat source treatment
Pressure drop in radiator and CAC air side (ΔP)	-	Test data	Porosity treatment
Pressure drop in radiator coolant side and CAC charge air side (ΔP)	-	Test data	Porosity treatment
Pressure drop in condenser air side (ΔP)		Test data	Porosity treatment

Test Bench Simulation - Heat Rejection

🕗 НҮПЛОАІ

Hxinput file for 3D simulation

NAME Radiator METHOD 3 ATYPE 102 0 CTYPE 105 0 AUTYPE 101 ADTYPE 103 CUTYPE 103 CUTYPE 104 URFQ 0.5 ISTART 1 NHXC 70 NHXA 10	NAME Intercooler METHOD 3 ATYPE 112 0 CTYPE 115 0 AUTYPE 115 0 AUTYPE 111 ADTYPE 113 CUTYPE 113 CUTYPE 114 CDTYPE 116 URFQ 0.5 ISTART 1 NHXC 90 NHXA 9
•••	•••
	•••
QADAT 1.28948 64893.1 1.93422 86512.1 2.57897 105690 3.22371 126882 3.86845 147480 4.51319 163982 5.15793 178250 0.0 0.0	QADAT 1.16161 44568.8 1.74242 47138.3 2.32323 48760.0 2.90403 50019.8 3.48484 51147.8 4.06565 52230.2 4.64645 53195.7 0.0 0.0
	END

CFD Simulation - Thermal and Flow Distribution 🕢 нушпоя

CFD Simulation - Velocity Distribution

🕗 НҮШЛДАІ

CFD Simulation – Data Acquisition

🕗 НҮШПОЯІ

32КРН НОТ			Air mass flow ate(m ³ /sec)	Pressure (Pa)			Air temperature (°C)	
		Area(m ²)	[]:kg/sec	P _{front}	P _{rear}	ΔP	T _{front}	T _{rear}
	Upper region	0.129	0.819[0.941]	-	-	-	15 10	70.49
Radiator	Total	0.311	1.647[1.834]	-306	-556	250	40.42	79.40
	Upper region	0.066	0.308[0.364]	-	-	-	22.67	52.04
CAC	Total	0.238	1.054[1.216]	-67	-330	263	33.07	52.04
Condenser		0.161	0.547[0.646]	4	-74	78	27.31	39.70
M-FAN		0.199	1.868[1.926]	-590	-238	352	57.94	55.44
E-FAN		0.070	0.427[0.504]	-88	61	149	25.64	25.69

Case	Heat	Stream	Temperature(°C)		Pressure drop	Heat rejection	Performance (°C)	
name	excitatiget		Inlet	Outlet	(Pa)	(W)	ACT	IMTD
Radia	Badiator	Air	44.44	79.40	249	66578		
	riadiator	Coolant			36955			
НОТ	CAC	Air	33.65	51.47	263	22814		
		Charge air			5462			

1D Simulation – Component Modeling

1D Simulation – BIR Adjustment

- Model Adjustment
- The effect of the vehicle on the cooling air flow through cooling package can be reduced to two elementary effects : Ram effect, vehicle pressure drop effect

International KULI User Meeting 2007

1D Simulation – BIR Adjustment

• Determination of the BIR

ITEM			Cold Simulation		Warm simulation		
	1			low speed	high speed	low speed	high speed
		Т	°C	24	24	24	24
Cimulation	_	р	hPa	1013	1013	1013	1013
Simulation	s ,	х	%	50	50	50	50
parameter		n Engine	RPM				
		v vehicle	km/h	32	50	32	50
		V_pt	l/min	240.00	240.00	240.00	240.00
Cooling Circ	uit	p_IM_IN	bar	1.00	1.00	1.00	1.00
		Т	℃	24	24	89	89
Chargo Ai	r	m_pt	kg/h				
Charge Al	ſ	_p_IM_IN	bar	2.07316	2.07316	2.07316	2.07316
		Т	°C	24	24	168	168
mechanical F	an	n	1/min				
		Zeta	-	225.78125	220.3125	198.4375	198.4375
BiR		min Zeta	-	100	100	100	100
		max Zeta	-	800	800	800	800
	T _{Ba}	d. Coolant IN	К	0.0	0.0	0.0	0.0
	T _{Ba}	d. Coolant out	K	0.0	0.0	-0.4	0.0
RAD	T _{Ba}	d Air IN	К	0.0	0.0	2.9	7.2
	T _{Ba}	d. Air out	К	0.0	0.0	3.1	3.9
	Coo	ling air flow	%	0.0	0.0	0.0	-0.2
	T _{CA}	C. Charge Air IN	K	0.0	0.0	0.0	0.0
	T _{CA}	C. Charge Air out	K	0.0	0.0	-1.4	3.8
CAC	T _{CA}	C. Air IN	К	0.0	0.0	0.5	3.8
	T _{CA}	C. Air out	К	0.0	0.0	1.1	3.3
(ling air flow	%	-0.9	-1.0	-0.7	-1.4
IMTD		К	-	-	-1.4	3.8	
ACT		К	-	-	0.0	0.0	

• Cooling system with split radiator and air path

• 1D-3D Interface : Velocity Profile at the Cross section of Radiator Outlet

1D-3D Coupling Simulation – Result Comparison 🕢 нушпоя

Cooling air speed : 1D only

Cooling air speed : 1D-3D coupling

	1D Only	1D-3D Coupling	Deviation
Radiator Heat Rejection (kW)	68,051kW	65,261kW	4,3%
Coolant Exit Temperature (°C)			2,1K

Radiator Heat rejection rate

Parameter study – Driving speed

Variation of driving speed

ACT = 110- Radiator inlet temperature + ambient temperature IMTD = CAC outlet temperature – ambient temperature

International KULI User Meeting 2007

🕗 НҮШЛДАІ

Parameter study – Charge Air Cooler

Variation of charge air mass flow rate

Low speed condition High speed condition ACT IMTD/ACT(°C) IMTD(°C) BASE Variation of charge air mass flow rate(%) Charge air inlet temperature ($^{\circ}$ C)

Variation of charge air inlet temperature

International KULI User Meeting 2007

🕗 НҮППАІ

IMTD

Parameter study – Radiator

Variation of Coolant mass flow rate

Parameter study – Cooling Fan

🕗 НҮШЛДАІ

Variation of Cooling Fan Operating Speed

Parameter study – Condenser

Variation of Condenser Heat

Parameter study – Heat Rejection

Variation of Heat Rejection rate (Radiator)

Variation of Heat Rejection rate (CAC)

🕗 НҮШПДАІ

Summary and Conclusions

- The BIR Value representing an underhood flow resistance can be obtained by correlation with a 3D simulation
- For real life application, where the mass flow is unknown, the integration of CFD is highly recommended to determine accurate predictions for mass flow and heat rejection.
- A combined simulation of 1D and 3D techniques make sense and delivers results that are highly reliable.
 - Combined simulation of thermal management with 1D and 3D tools can increase the reliability of simulation significantly.

