

KULI Air Side Christoph Stroh

drivetrain components and systems

engines and engine components

axle and chassis modules

Engineering Center Steyr Gmbh & Co KG

driven by passion

Contents

www.magnapowertrain.com

- Theoretical considerations
- cp-values
- Fans
- Uneven air flow CFD interface

www.magnapowertrain.com

MAGNA POWERTRAIN

The theoretical foundation

$$p_{\text{stat}} + \frac{\rho}{2} v^2 \left(+ \rho g h \right) = \text{constant}$$

$$= p_{\text{dyn}}$$
Bernoulli
$$= p_{\text{tot}}$$

- p_{stat} = static pressure
- p_{dyn} = dynamic pressure
- p_{tot} = total pressure

- $\rho = density$
- v = velocity
- h = height
- g = gravity

www.magnapowertrain.com

M MAGNA MAGNA POWERTRAIN

A simple air path

Assumptions:

- $\rho = constant = 1$
- $p_{1,stat} = 1 bar$
- v1 = 20 m/s
- $A_1 = 0.5 \text{ m}^2$
- $A_2 = 1 \text{ m}^2$
- $\Delta p_1 = \Delta p_2 = 200 \text{ Pa}$
- $p_{2,stat} = ??$

Method 1: Bernoulli holds between components

www.magnapowertrain.com

$$A_2 = 2A_1 \implies v_2 = v_1 / 2 = 10 \, \text{m/s}$$

$$p_{1,\text{dyn}} = \frac{\rho}{2} v_1^2 = \frac{1}{2} 400 = 200 \text{ Pa}$$

 $p_{2,\text{dyn}} = \frac{\rho}{2} v_2^2 = \frac{1}{2} 100 = 50 \text{ Pa}$

Bernoulli holds between the components

$$=> p_{tot} = konstant$$

$$=> p_{stat}$$
 increases by 200-50 = 150 Pa!

$$p_{2,\text{stat}} = p_{1,\text{stat}} - \Delta p_1 + 150 - \Delta p_2 = 99.750 \text{ Pa}$$

Method 2: Static pressure constant between components

www.magnapowertrain.com

$$p_{2,\text{stat}} = p_{1,\text{stat}} - \Delta p_1 - \Delta p_2 = 99.600 \text{ Pa}$$

How does KULI calculate the air path?

- KULI uses Method 2, i.e., p_{stat} is constant, because
 - in reality in most cases p_{dvn} cannot be regained when the area increases.
 - essentially only the area change from the first to the last component in the air path is relevant, all other changes cancel out.
 - a change of pressure due to a change of area can easily be packed into a built-in resistance.
- Investigations showed that there can even be a static pressure drop from small inlet grille areas to the larger radiator area, mainly due to swirls and turbulences.

Constant total pressure in KULI

In special conditions it makes sense to use constant total pressure, e.g. for diffuser-like configurations without turbulences.

In KULI use a transition element and

choose "Diffuser"

 The "Efficiency" defines the part of the dynamical pressure difference that will be converted into static pressure.

Calc, method for pressure drop

Standard

Miller

Comments

✓ Diffuser

Efficiency

Contents

www.magnapowertrain.com

Theoretical considerations

- cp-values
- Fans
- Uneven air flow CFD interface

Air flow at air inlet: cp-values

 \mathbf{p}_{∞} , \mathbf{p}_{i} : static pressure ambient and entry, resp.

 \mathbf{v}_{∞} , \mathbf{v}_{i} : driving speed and air entry velocity

Determination of pressure difference

- Relative Method
 Measurement: closed; Analysis: open
- C Absolute Method Measurement: open or Values from CFD; Analysis: open

New options for cp value

C Total Pressure Method Measurement: closed; Analysis: open

rel.:
$$\Delta p = cp \times \frac{\rho}{2} \times (v_{\infty} - v_{inlet})^2$$

abs.:
$$\Delta p = cp \times \frac{\rho}{2} \times (v_{\infty})^2$$

tot.:
$$\Delta p = \frac{\rho}{2} \times (cp \times v_{\infty}^2 - v_{inlet}^2)$$

MAGNA POWERTRAIN

cp-values - the 3 methods

$\left(\Delta p = p_i - p_{\infty}\right)$

"Absolute method"

$$c_p = \frac{\Delta p}{\frac{\rho}{2} v_{\infty}^2} \iff \Delta p = c_p \frac{\rho}{2} v_{\infty}^2$$

"Relative method"

$$c_p = \frac{\Delta p}{\frac{\rho}{2} (v_{\infty} - v_i)^2} \iff \Delta p = c_p \frac{\rho}{2} (v_{\infty} - v_i)^2$$

"Total pressure method"

$$c_p = \frac{\Delta p + \frac{\rho}{2} v_i^2}{\frac{\rho}{2} v_{\infty}^2} \iff \Delta p = \frac{\rho}{2} (c_p v_{\infty}^2 - v_i^2)$$

MAGNA POWERTRAIN

cp-value: Absolute method

$$c_{p} = \frac{\Delta p}{\frac{\rho}{2} v_{\infty}^{2}} \iff \Delta p = c_{p} \frac{\rho}{2} v_{\infty}^{2} \iff p_{i} = p_{\infty} + c_{p} \frac{\rho}{2} v_{\infty}^{2}$$

- cp-value defines which part of the dynamical pressure can be converted into static pressure.
- The determination of the cp-value must be carried out for open condition (i.e. with engine compartment air flow)
- The cp-value and thus the pressure increase only depend on the driving speed; the area of the cp-value has no influence!
- The area of the cp-value is used in the postprocessor to compute the flow velocity in the cp-value component; this however is only an output value and does not influence the computation.

cp-value: Relative method

www.magnapowertrain.com

$$c_p = \frac{\Delta p}{\frac{\rho}{2} (v_{\infty} - v_i)^2} \iff \Delta p = c_p \frac{\rho}{2} (v_{\infty} - v_i)^2$$

 Purpose of this method: Determination of the cp-value for closed condition, simulation then for open condition => different formulas for determination and usage (simulation)

Determination (closed)

 $c_p = \frac{\Delta p}{\frac{\rho}{2} v_{\infty}^2}$

Usage (open)

$$\Delta p = c_p \frac{\rho}{2} (v_{\infty} - v_i)^2$$

 The pressure increase depends on v_i and thus on the area of the cp-value (since v_i = volume flow / area)! This dependency can be significant!

cp-value: Total pressure method (suggested by VW)

www.magnapowertrain.com

$$c_{p} = \frac{\Delta p + \frac{\rho}{2} v_{i}^{2}}{\frac{\rho}{2} v_{\infty}^{2}} = \frac{p_{i, \text{tot}} - p_{\infty}}{\frac{\rho}{2} v_{\infty}^{2}} \iff \Delta p = \frac{\rho}{2} (c_{p} v_{\infty}^{2} - v_{i}^{2})$$

 Idea of this method: Total pressure at entry should be constant, no matter if the entry is open or closed => this method should be useable for open and closed models!

cp-value describes total pressure drop from ambient to air inlet.

$$p_{\infty,\text{tot}} = p_{\infty} + \frac{\rho}{2}v_{\infty}^2 > p_{\infty} + c_p \frac{\rho}{2}v_{\infty}^2 = p_i + \frac{\rho}{2}v_i^2 = p_{i,\text{tot}}$$

• The pressure increase depends on v_i and thus on the area of the cp-value (since v_i = volume flow / area)! This dependency can be significant!

Areas of cp-values

Recommendation: For the determination of the cp-value the mean values of p and v over—the depicted surface A should be taken

gross area

In the cp-value component the gross area should be used, since pressure drops which are due to the shape of the grille are modeled in the area resistance describing the grille.

Inlet grid

www.magnapowertrain.com

1.IG

Definition of cp value and pressure loss of grill in one component

Contents

www.magnapowertrain.com

Theoretical considerations

cp-values

Fans

Uneven air flow - CFD interface

How to determine characteristic curves of fans?

- How and where are pressures to be measured?
 - is regulated in DIN-Norm 24163
- Should I use static or total pressure differences?
 - depends on test bench; rather take static pressure differences
 - in KULI this is not a problem, since the difference between the two version can be corrected with a built-in resistance
- Should I use a deflector plate ("Prallplatte")?
 - Measurements with deflector plate yield more realistic characteristic curves
 - The difference with/without deflector plate cannot be compensated with a standard built-in resistance
 - Problem of normalization
 - how big should be the deflector plate?
 - what would be the distance between fan and deflector plate?

Fan measurement - Standard test bench (DIN 24163)

www.magnapowertrain.com

Determination of pressure increase Part 2, Section 8.1.3

Blowing unblocked Δp_{fa}

1) Measurement of total pressure p,1

$$\Delta p_{fa} = p_a - p_{t1} = 100000 - 99900 = 100 \text{Pa}$$

2) Measurement of static pressure p_{st1}

$$\bar{c}_5 = \dot{V}_1 / A_5$$

$$\Delta p_{fa} = p_a - (p_{st5} + \frac{\rho_1}{2} \cdot \bar{c}_5^2) = \Delta p - \frac{\rho_1}{2} \cdot \bar{c}_5^2$$
= 100000-99894-6=100Pa

Total pressure increase ∆p_t

$$\bar{c}_2 = \dot{V}_2 / A_2$$

$$\Delta p_t = \Delta p_{fa} + \frac{\rho_2}{2} \cdot \bar{c}_2^2 = 100 + 60 = 160 \text{ Pa}$$

Characteristic fan curves with and without deflection plate

Regression of fan curves

Regression of fan curves (2)

MAGNA POWERTRAIN

Fan regression - how to use it

- Regression can be used to smooth out measurement errors
- Regression can be used to combine measurement data of resistance curve (fan off) and pressure increase curve (fan on)
- Regression can be used to convert measurement data of electric fan into mechanical fan, allowing modelling of continuous electric fan
- Usually raw data is simply copied from Excel into KULI
- Description of usage in online help:
 - KULI base -> Components -> Fans -> Fan regression

Contents

www.magnapowertrain.com

Theoretical considerations

- cp-values
- Fans
- Uneven air flow CFD interface

1D-3D Principles

Theory

www.magnapowertrain.com

ζ-values of block elements

Cooling System

Air flow in block

matrix of correction factors for ζ-values in block Air velocity distribution from CFD analysis

Air velocity distribution on cooling system block

Accuracy and Time vs. Number of Subdivisions

www.magnapowertrain.com

Motivation for variable resistance matrix

- www.magnapowertrain.com
- Velocity distribution on surface of component is not equal for different conditions
- Velocity distributions may depend on
 - driving speed
 - fan rpm
 - air flaps
 - ...
- Standard implementation of resistance matrix in KULI requires separate KULI models for different configurations
- Standard implementation of resistance matrix is thus not suitable for transient simulation
- Resistance matrix needs to be more flexible during simulation

New resistance matrix method in KULI

- Generation of resistance matrix as before
- Several resistance matrices can now be assigned to a single block
- Each resistance matrix is assigned to a certain driving speed and/or one other parameter
- This second parameter is defined via COM-objects. Hence, any sensor can act as this second parameter
- During computation the zeta-correction factors are obtained via interpolation depending on the current driving speed and/or value of the second parameter

A W

Usage (1)

A variable resistance matrix is added to a block in the same way as a standard resistance matrix

context menu

Usage (2)

choose type of resistance matrix

click on "Configuration"

Usage (3) - Dependence on...

MAGNA POWERTRAIN

Usage (4) - Choice of COM object

choose

www.magnapowertrain.com

list of all available COM objects in model is displayed; COM ID can also be entered manually

COM-ID FanRPM

Usage (5) - Choice of resistance matrix files

choice of resistance matrix file via context menu

Driving speed [km/h]	Value of COM object	Resistance matrix	
30	1000	ExCFD_30_1000.scswm	
30	4000	ExCFD_30_4000.scswm	
120	1000	ExCFD 120 1000.scswm	Input direction: horizontal
120	4000	ExCFD_120_4000.scswm	
			Input direction: vertical
			Insert row above current
			. Insert row below current
			Remove current row(s)
			Append 100 lines
			Clear Selection
			Clear Table
			Copy for Excel®
			Copy for Excel® (transp.)
			Choose resistance matrix file

Some implementation details

- Interpolation is done (bi)linear. Hence, only two values for each variable (velocity and/or COM value) are necessary
- No extrapolation is done; boundary values are taken if current operating point is outside defined range
- If dependency on two variables is selected, then for each velocity value all COM values must appear in the configuration table (and vice versa)

Thank you for your attention!

drivetrain components and systems

engines and engine components

axle and chassis modules

Engineering Center Steyr Gmbh & Co KG

driven by passion