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Introduction

Traditionally a cooling system is dimensioned to survive
Worst -case stationary operating points like..

1 AR H RGBT F CA A2 e A AR JD\I%/MEF?E’J@% IRIE
.. full load operation & K 1%

.. mountain plus trailer Z & #i 7=

In real life application the cooling system then is over-dimensioned most
of the time.

TESEBR N R, WRHIRGAEZEE O M e ket

Cost pressure and emission regulations require more detailed simulation...

BEAh,  SEER ) s D ATHEBCRI A W 22 58 A AU .. .

Transient Simulation!

PBESIRT !
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Sportscar Applications

e Sportive driving E#A T3 < > .
highly transient operating conditions : N ATE s
5 A T 2R et e
. 2 . N . m coolant, ]
- Engine, gearbox and fluid circuits >~ Mw ISP v
must be modeled transient. "o

S AEM LUt A 2 AR A OB s = 0 0 T G

* Prediction of transient oil- and water temperatures
for a race circuit.

TR T - AT 7K- A3 B2
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Warm-Up and Emission Reduction

* Fuel Consumption and Emissions
< » engine temperatures

JRMVE AT FEIL & 513835 S

» Consumption is defined by
standardized transient warm-up
cycles (e.g. NEDC)

WFEAL FH AR UERE S warm-up /G2 ANEDCK

i€ FTaXE
» KULI simulates warm-up cycles | %

« » influence of
thermal management!
1 FHKUL RS Twarm-up & 25 o fr) 2
g
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Warm-Up and Comfort

* Engine Warm-Up < >
heat used for engine,
not for passengers
Engine warm-up #.45 5 | S Fii 4,

R iR _
* Simulation of electrical heaters
FL - I #AEs AU

* Simulation of temperature
distribution in passenger cabin

FRAEL 3R 2 e N O B o AT
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Transient Components of a Car

« The engine :
Produces heat and has
thermal capacity

TRy H FE I BT
« Fluids in the circuits:
Thermal capacity
T EHIH 2
- Tubes and pipes:
Thermal capacity

Heat exchange :

s o « Transport (fluid in tubes)
st 3 B ) A

» Additional thermal capacities - Convection (surfaces to fluids or air)
UURR EHE MR BRI A H 0

- Passenger cabin « Conduction (inside components)

FeEHE A A A A
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Point Masses
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1 Olkreislauf

1.PM

A point mass is defined by
point mass(] & X

e mass i &

- specific thermal capacity /£ #i2%

Heat exchanged with a circuit depends on
al g i A8 sz 52 H

» heat transfer area /Z# G

» heat transfer coefficient /Z# & 7

%) Point Mass [ExHcNet_Pmindir.kuliPm] =3
wras
02a 8
Title [ mep = 15000
Mazs [kg] 17.321
Heat cap.lJ fka/K] Aluminium | |837
M awimum heat tratisfer area [mé] |1
Heat transfer coefficient [ Amek] |1
Ready

O=k-A-(T, .—T

circuit LSS )

A\



M MAGNA

MAGNA POWERTRAIN

Heat Conduction

2.Pr l 8 Heat conduction component g@@
] it File Extras
1. HCC i
0268
|C|:|nnect. heat conduction comp. |—.' —————— -——I-D-l—— !
=Y ’ ' i Title | oil bo weater
I
! A —
i t aximum heat transfer area [mE] 0.25
: Length [m] 1
[Connect. heat conduction comp. o - T Heat condustivity [w/m/K] |hminim =]
A heat conduction component is defined by Ry |

heat conduction4] /4 4% & X T
- heat transfer area /£ g #

- length #F#HKE
* thermal conductivity #i/&-F#

A-A

Q-
|

AT
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Thermal Network

A thermal network is described by a system of differential equations:
R FE IR Ry 3oy T R

3 PM

LS WU NP | Ry RS - R
E _ m rk A (TK T1)+( | jlz (T2 Tl)‘l‘( | JB (T3 Tl)} El,WérmeleitkDmpDnente I—'-E-"—|: l
aT, 1 A-A e
am, . (T =T+ == (T

dt m-c,) ( | ]12 ¥ Z)J{ | L " Z)w *

1 Wasserkreislauf

1.Pm s
Mass 1: convection #4fJz and ' é |

El
|Anschl. Warmeleitkormponente I—f

2 Eni o]
dT3 @ El =
F = O |Ansch|. Warmeleitkomponente I—'— ﬂ

m
m

; l— 1

(3 =

I =

s z

|

|

[ -

Mass 2:

Mass 3: constant &4
This is solved numerically!

TESTHE 774K AE !
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The KULI Engine Model MAGNA POWERTRAIN

Influences... « Coolant A Ak
A2 . Oil 2P
« Airflow 5708

2 HEng [Qil] ‘ater Oil Hx []]

g "
Heat Loss Air Ducts
-—#—Alr flow spedd ol pan
kXA
_J - —--—#—Quantity of he|
n

Heater matrix heating vehicle body [I]

ater circuit
Exit temperature Obd |

2.HEng ["Water] 2VALVE
Themastate ﬂM-ﬂow ratio br. 1[%] (target approaoh)| C b t . / /)
| e CLompustion

o
| )b .
- « Friction JEE

Heat from...

L
Ot [~ l-| Ivi-flowy ratio br. 1 [%] (target approach)‘
i

A\



The 4-mass engine model MAGNA POWERTRAIN

The model consists of four
Fraction of heat /P‘ Fraction of heat TTPaSISGS./\ A =
from combustion Indirect indirect from combustion *%:lﬂ:i@ 4 4 | B’igﬁ%
and friction which AR mass oil and friction which
goes into water water goes into oil
Oil- and water side are separated.
<A XK AT T X5
direct
o A m - The masses are connected
- Oil circuit by heat conduction
P k.A Jrie R 2 (e o g A R
o The direct masses are heated
by combustion and friction.
HE RS IARE UL K R A
This is the simplest possible model to fulfill the Heat dissipates to water, oil
main demands for cooling system simulation. and air.
XA I B 1] R B 2R DA A2 v 2 R GE 400 ) 2K PEIEIL K, LA R
WRHL

\ \
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Mathematical Formulation Engine MAGNA POWERTRAIN

The thermal network again is a system of differential equations.
A TP 28 ATy T R

The formula contains:
N Fraction of heat ) Fracti f heat
NI from combustion (@ ) (® \from combustion
. clileiuileule ghs inlis water mass oil and friction which
the thermal goes into water goes into oil
capacities,
Sy

direct
mass
water

* heat conduction
between masses
pm i) A #ufL 5,

* heat sources and
P Ll K Al

« heat sinks %

Qil circuit

Water circuit

‘v’ie{l...N} d;:[i = — ~1C _
i p,i

(kA) ij '(Tj _Ti)+ I:)combustion N +Pfriction i _Pcircuit ,l}
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Transient Effects of a Tube

« Total Fluid in Tubes & EH KWL — Thermal Capacity WA &

* Length of Tube BBHIKE — Delay $EIRZIN

Tube
—P> | Delay —>

* Turbulences — Diffusion

Tube

B | oiffusion




M MAGNA

MAGNA POWERTRAIN

Modelling a Tube

The tube is divided into segments...
B F LA ER
Tube Segment:

Convection to Air

| Mass Transport
Convection<egiiallsss p

This leads to a differential equation again. .

B AN Gk = \‘
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Transient delay and diffusion of a single tube

Water circuit

o 1

Single tube, reaction on 2s duration peak

80 ’_\ <
60 /< \\ 4
E;. ® / \ \ — before tube
" : S Tube length: 1m
. ) \ /'K Diameter: 20mm
T \ / : ; * | Vol.Flow:  05kgls

‘ \/ Time [s]
Diffusion effects

Initial delay A\‘




Delay and diffusion, 5 consecutive tubes

MAGNA POWERTRAIN

Temperature [°C]

100

80

60

40

20

-20

5 Ildentical Tubes, progression of 2s Peak

"\ mﬁnﬁ%v& S

— after tube 1
after tube 2
after tube 3

— after tube 4
— after tube 5

M s

-

2

\3 4 5 6 7 8 9
Width after 5 tubes ‘T

e PEBAEK I

Same situation as
before, this time 5
consecutive tubes.
R R R 1R TE R A A
EEHISNME K G

A\



Closed Circuit
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Heat source is switched on for 2 seconds.

FYEIT JE 2B 1 1]

3.TUB 2TUB 1.TUB
| )
LJ In Out 7 In Out

Temperature [°C]

Heat distribution in closed circuit, 3 tubes

1. Water circuit

In
out

Simulation parameters

FL
In Out
@]
Quantity of heat

1.H

1.Characteristic curve
X Out
el

4 -+ 6
— after tube 1 4
— Heatsource
+ 2
0
4 6 8 10 12
-2

Time [s]

Heatsource [kW]

/

1) Delay &R
2) Warm-up iz Jt
3) Warm-up with

recirculated
hot water

H TG A R FAK P T
4) Diffusion, no

heat source .

TR I A 1 ‘

A
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Cabin Model - Workflow MAGNA POWERTRAIN

1) Select type
Wiz

2) Deﬁne geometry o i {l, /

JUfT & X *‘j it
A |

3) Define airflow

Gl T

4) Simulate: Boundary conditions &

BATHER convection ~—— E.
TR & B "
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Applications of the Cabin Model

The cabin model can be used to answer questions like...

Fe AR n] L T s | n i ...

« How long until the driver gets a cool head in a hot car?
e 225 Bt 573 SR (10 U B A 0 B — s U R TR 2 KN [R) 2
— multiple temperature zones 22 /F 47X &) %

* How to distribute the inlet airflow to prevent uncomfortable air drafts?
WHAT A B 53 BE 25 Bl LAk S AN 1) 1 1?2
— multiple air inlets ZXEA O& 1

* What is the influence of ambient temperature and sunshine?
IAERE B DL R H WG 2538 il A R SR8 i 2
— wall and radiation models £Z/Z& 2557 ZMHT% 15

A\
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Defining Transient Operating Points in KULI
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Transient sequence of
operating points:
S T O E X
... for different times
S A 1]
... different operating
conditions can be defined

LAURAGTRT LI 5

Tupe Uitz Entraz

" Steady state Diriving speed kmth

(& Transient Armbient tenperature IT— Assncﬁons

" Driving simulation Ambient air prezsLe hFa
et s T T[i:]e Eng[i[r;llj:;F'M B[EIaE[]F' Speed Wa[rg]—up Ambternp. | AJC on
Air hurnidity [%] [50 1 2000 5 5 I 10 Oiff :‘
e e i o

1000 3500 g 100 1] 10 On

Start time [2] l'li
End time [s] 3000
Time Step [2] |1
Time Step Refr. Circuit [g] l'li

Engine RPM,
BMEP,

> Engine operating point 5|2 T,

Driving speed,
Temperature offset underhood,
Ambient temperature,

pd

Air flow conditions &Szl

AC status

~__—— Additional heat source & #i .

A\



Defining Transient Operating Points in FASI

MAGNA POWERTRAIN

Only KULI —
KAEAKULI

KULI and FAS] —»
BEAKULI&FASI

Engine operating point defined directly by
RPM and BMEP

G R LI (S R F L) 5 50/ 7 R e X

FASI sets throttle i1 E < .
* [teration

KULI calculates RPM and BMEP B
v

KULI simulates temperatures

v

KULI calculates available engine momentum

A\

FASI tries to reach target speed




Coupling KULI and FASI
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MMAGNA
MAGNA POWERTRAIN

FASI

Version 6.0

Driving Simulation

« Route and vehicle &8 UL & 44k
« Sets throttle to reach speed Jili[ T LA A i i
 Adjusts throttle to available power

AR P H] Zh A R 4 =T

Throttle
73T

\4

A

Available engine
momentum

CIVE o/ =

Thermal Simulation
» Converts throttle to operating point

THA AR T A
* Provides engine momentum ${}t 5|25 5)) &

« Fluid circuit temperatures 1545 LA _'

A\



M MAGNA

MAGNA POWERTRAIN

FASI Areas of Application

Trucks Motor Tractors Farm Tractors

gNGE 25| % A& H

Motorcycles FEJE %=

90% of all available vehicles can be simulated

90% ) 4= ] LA I FASI3EA TR 40
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FASI Input Parameters

/ Axles and Tires

fegiih DL Fein

Driver

EeLiES

s
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Typical Questions FASI

* Finding an optimal vehicle configuration
- PR AR I A
Which gearbox is optimal for my vehicle?
AR 3 AR S A i o AR AR 2R
» Saving fuel and reducing emissions
VERARHE Y& i1
How are the energy flows distributed?
HE 5 an 4] 79 e ?
* Comparing the performance of different components
G NTE S el
What difference makes an improved engine?
DSCIE 51 BT e 520 ?
* Engine operating points for KULI
i (D KU LIt 2200 5 [ 32 000
Operating point at 30km/h and 12% ascent?
fE30km/h, 12%3 % R IR B2
- Define load statistics & X & fwf4i vt
Dimensioning a rear axle 115 5%

FASI operates as a stand alone program as well!

FASI G fE S 1T !
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Conclusions and Outlook

KULI and FASI cover a wide range of transient applications...

* Thermal Network Already available in KULI 7.1

* Engine Model Already available in KULI 7.1

e Transient Tubes New in KULI 8 (Summer 2008)

« Cabin Model Improved in KULI 8 (Summer 2008)
« KULI — FASI Interface New in KULI 8 (Summer 2008)

A\



Thank you for your attention!
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