

Thermal Management Investigations at FKFS: Experimental Measurements and Simulation with CFD and KULI

Overview:

- 1. FKFS Experimental Test Facilities
 - Aeroacoustic Wind Tunnel
 - Roller Test Bench and Hot Climatic Wind Tunnel
- 2. Experimental Measurements
 - Air Flow
 - Thermal
- 3. Simulation with KULI
 - Resistance Matrix
 - Built-In Resistance
- 4. Summary

1. Experimental Test Facilities

- 2. Measurements:
- Results

3. Simulation

6 M. Genger

T. Kuthada

J. Wiedemann

Measurements – Results

Heat Balance Air Side: Mass Flow and Temperature Rise Coolant Side: Mass Flow and Temperature Drop

- Cooling Performance:
- of Reference Vehicle at different Driving Conditions
- at different Fan Speeds
 - Relation between Air Mass Flow and Temperatures of Coolant and Cooling Air at Full Load Operating Points
 Relation between Fan Speed and Air Mass Flow

1. Experimental Test Facilities

2. Measurements

- 3. Simulation:
- Overview

Simulation at FKFS

"Cold": PowerFLOW

Cooling Air Flow

"Hot": KULI

- 1. Experimental Test Facilities
- 2. Measurements
- **3. Simulation:**KULI

1. Experimental Test Facilities

2. Measurements

3. Simulation:KULIResistance Matrix

10 M. Genger T. Kuthada J. Wiedemann

Simulation with a Resistance Matrix in KULI

Convertion of the Measured or Simulated (3D-CFD) Air Velocities in a Resistance Matrix in KULI:

1. Experimental Test Facilities

- 2. Measurements
- **3. Simulation:**KULIResistance Matrix

1. Experimental Test Facilities

- 2. Measurements
- **3. Simulation:** KULI Results of the *Matrixmodel*

1. Experimental Test Facilities

2. Measurements

- 3. Simulation:
- KULI Model with Built-In Resistance

15 M. Genger T. Kuthada J. Wiedemann

Substitution of the Resistance Matrix with:

1. Experimental Test Facilities

2. Measurements

3. Simulation:KULIBuilt-In Resistance

16 M. Genger T. Kuthada J. Wiedemann

Determination of the Built-In Resistance – the Unknown Factor

Vary the Pressure Drop Until the Air Flow Rate is Equal to the Experimental Value (or the *Matrixmodel* Result)

2. Measurements

3. Simulation:KULIBuilt-In Resistance

17 M. Genger T. Kuthada J. Wiedemann

Determination of the Built-In Resistance – the Unknown Factor

Know: Mass Air Flow through the Radiator from Exp. Measurements Want: Built-in Resistance at this Operating Point

Summary

- Simulation Results for the Coolant Temperatures Differ From Experimental Measurements by Less Than 1.5 %
 - High Accuracy in the Cooling Air Flow Measurements
- - The *Matrixmodel* Offers Detailed Information on the Air Flow through the Radiator and its Relation to Cooling Performance
- - Knowledge of the Built-In Resistance from Air Flow Measurements
 - It Has Been Shown that More Air Temperature Sensors at the Radiator Outlet Will Produce More Accurate Results

22 M. Genger

T. Kuthada

J. Wiedemann

