

Advanced Transient Simulation with KULI and FASI

ECS, Christian Rathberger

Traditionally a cooling system is dimensioned to survive *worst-case stationary operating points* like... 通常冷却系统被设计用以满足最坏稳态工况条件下的使用,例如:

... full load operation 最大负载

... mountain plus trailer 安置拖车

在实际应用过程中,冷却系统在多数情况下被过高设计

Cost pressure and **emission regulations** require more detailed simulation... 此外,实际的压力和排放的校对需要更详细的模拟......

Transient Simulation! *瞬态模拟*!

Introduction

Transient Applications and Requirements

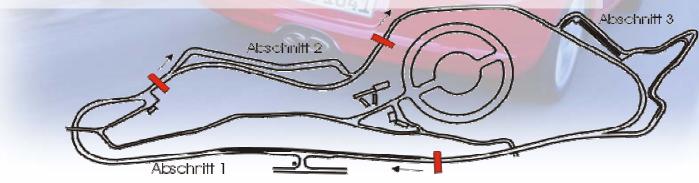
Thermal Networks

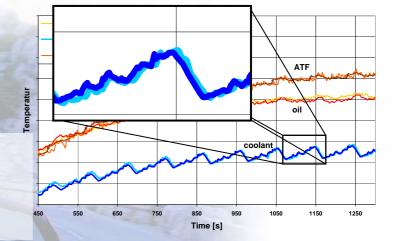
Engine Model

Transient Simulation of Tubes

Cabin Model

Transient Simulation with KULI and FASI


Conclusions and Outlook

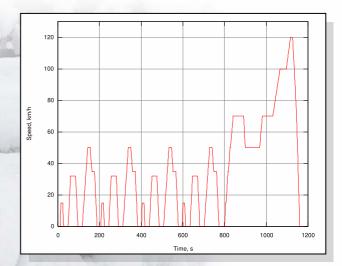


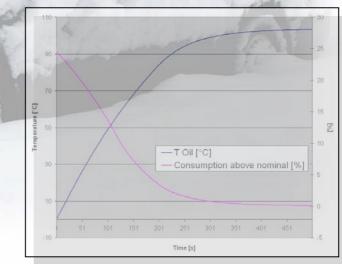
Sportive driving 竞速行驶 ←→→
 highly transient operating conditions
 高强度的瞬态工况条件

 Engine, gearbox and fluid circuits must be modeled transient.
 引擎、变速箱以及流路都需要以瞬态的模型搭建

 Prediction of transient *oil- and water temperatures* for a *race circuit*. 预测瞬态下 油- 和 水- 的温度

Warm-Up and Emission Reduction

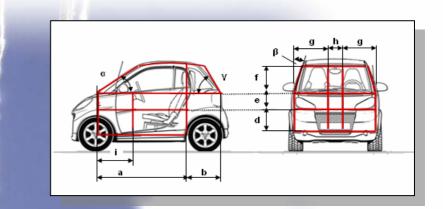


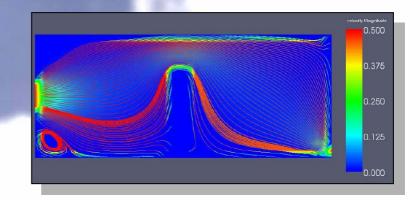

Fuel Consumption and Emissions
 ← → engine temperatures
 燃油消耗和排放 & 引擎温度

 Consumption is defined by standardized *transient warm-up cycles* (e.g. *NEDC*) 油耗使用标准瞬态warm-up循环NEDC来 标定

KULI *simulates* warm-up cycles

 ← → influence of
 thermal management! 使用KULI进行warm-up循环中的整
 车热管理





Warm-Up and Comfort

- Engine Warm-Up ← → heat used for engine, not for passengers
 Engine warm-up单指引擎预热, 而非用于乘客
- Simulation of *electrical heaters* 电子加热器的模拟
- Simulation of temperature distribution in *passenger cabin* 模拟乘客舱内的温度分布

Transient Components of a Car

- The engine : *Produces heat* and has *thermal capacity 引擎输出热量并有热容影响*
- *Fluids* in the circuits: *Thermal capacity* 流体的热容
- Tubes and pipes: Thermal capacity 管路的热容
- Additional thermal capacities 以及其它热容
- ・Passenger cabin *乘客舱*

Heat exchange :

- *Transport* (fluid in tubes) 流体与管路的热交换
- **Convection** (surfaces to fluids or air) 从表面到流体或空气的热对流
- **Conduction** (inside components) 零部件内部的热传导

Contents

MAGNA POWERTRAIN

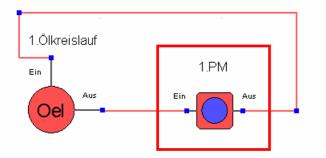
Introduction

Transient Applications and Requirements

Thermal Networks

Engine Model

Transient Simulation of Tubes


Cabin Model

Transient Simulation with KULI and FASI

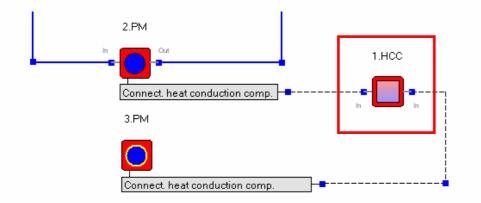
Conclusions and Outlook

Point Masses

A point mass is defined by point mass的定义

- mass *质量*
- specific thermal capacity 比热容

Heat exchanged with a *circuit* depends on 与回路中的热交换受影响于其


- heat transfer area 传热面积
- heat transfer coefficient 传热系数

Point Mass [ExHcNet_PmIndir.kuliPm]		
File Extras		
1 🔁 😖 🖶		
Title	mcp = 15000	
Mass [kg]		17.9211
Heat cap.[J/kg/K]	Aluminium	▼ 837
Maximum heat transfer area [m²]		1
Heat transfer coefficient [W/m²K]		1
		,
Ready		

 $\dot{Q} = k \cdot A \cdot \left(T_{circuit} - T_{mass}\right)$

Heat Conduction

A heat conduction component is defined by heat conduction组件被定义于

- heat transfer area 传热面积
- length 特性长度
- thermal conductivity 热传导率

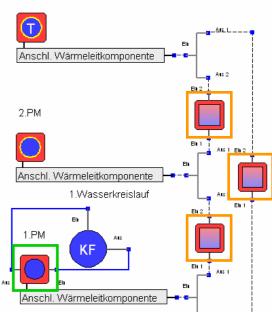
Heat conduction component	
File Extras	
] 🔁 🤣 🖶 🖶	
Title	oil to water
Maximum heat transfer area [m²]	0.25
Length [m]	1
Heat conductivity [W/m/K]	Aluminium 👤 205
Ready	

 $\dot{Q} = \frac{\lambda \cdot A}{I} \cdot \Delta T$

Thermal Network

A thermal network is described by a **system of differential equations**: 换热过程被描述为微分方程组:

$$\frac{dT_1}{dt} = \frac{1}{(m \cdot c_p)_1} \cdot \left[k \cdot A \cdot (T_K - T_1) \right] + \left(\frac{\lambda \cdot A}{l} \right)_{12} \cdot (T_2 - T_1) + \left(\frac{\lambda \cdot A}{l} \right)_{13} \cdot (T_3 - T_1) \right]$$


$$\frac{dT_2}{dt} = \frac{1}{(m \cdot c_p)_2} \cdot \left[\left(\frac{\lambda \cdot A}{l} \right)_{12} \cdot (T_1 - T_2) \right] + \left(\frac{\lambda \cdot A}{l} \right)_{23} \cdot (T_3 - T_2) \right]$$

$$\frac{dT_3}{dt} = 0$$

- Mass 1: convection 热对流 and conduction 热传导
- Mass 2: conduction 热传导
- Mass 3: constant 常数

This is **solved numerically!** *使用数值方法求解* !

© ECS / Disclosure or duplication without consent is prohibited

Ats 2

3.PIVI

Contents

MAGNA POWERTRAIN

Introduction

Transient Applications and Requirements

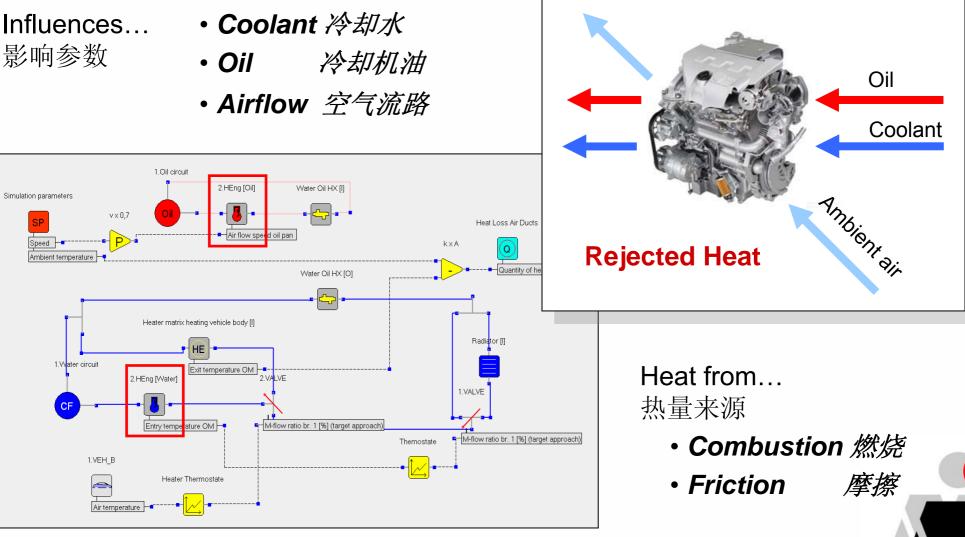
Thermal Networks

Engine Model

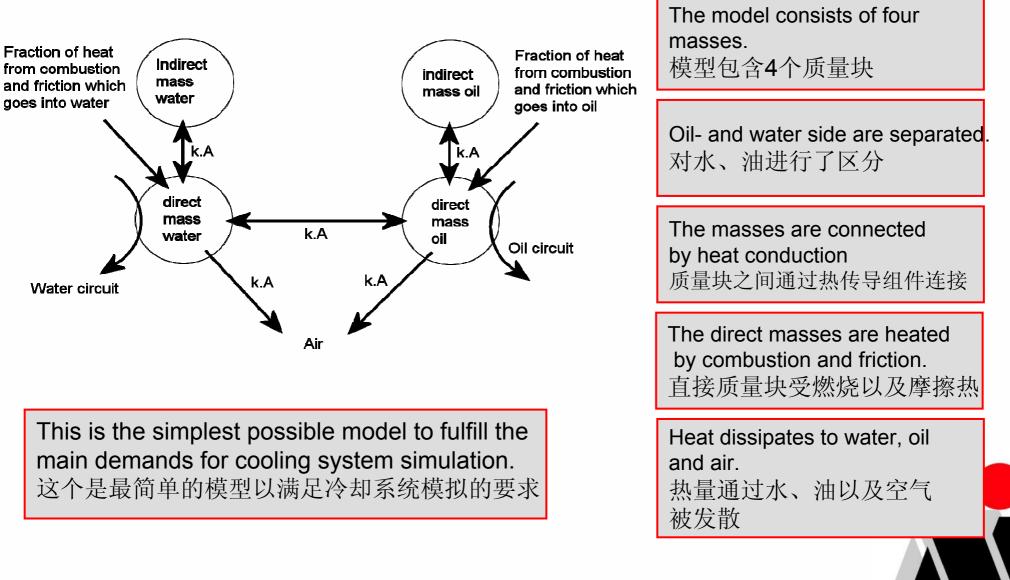
Transient Simulation of Tubes

Cabin Model

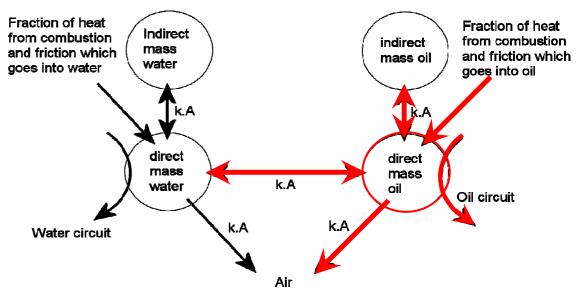
Transient Simulation with KULI and FASI


Conclusions and Outlook

The KULI Engine Model


MAGNA MAGNA POWERTRAIN

The 4-mass engine model



The thermal network again is a system of differential equations.

通过热网络建立微分方程组

The formula contains:

- 公式包含 • the thermal
 - capacities, 热容量
 - heat conduction between masses pm间的热传导,
 - heat sources and 热源以及
 - heat sinks 热降

$$\forall i \in \{1 \dots N\} \quad \frac{dT_i}{dt} = \frac{1}{m_i \cdot c_{p,i}} \cdot \left(\sum_{j=1}^N (kA)_{ij} \cdot (T_j - T_i) + P_{combustion_{j},i} + P_{friction_{j},i} - P_{circuit_{j},i} \right)$$

 $\ensuremath{\mathbb{C}}$ ECS / Disclosure or duplication without consent is prohibited

Contents

MAGNA POWERTRAIN

Introduction

Transient Applications and Requirements

Thermal Networks

Engine Model

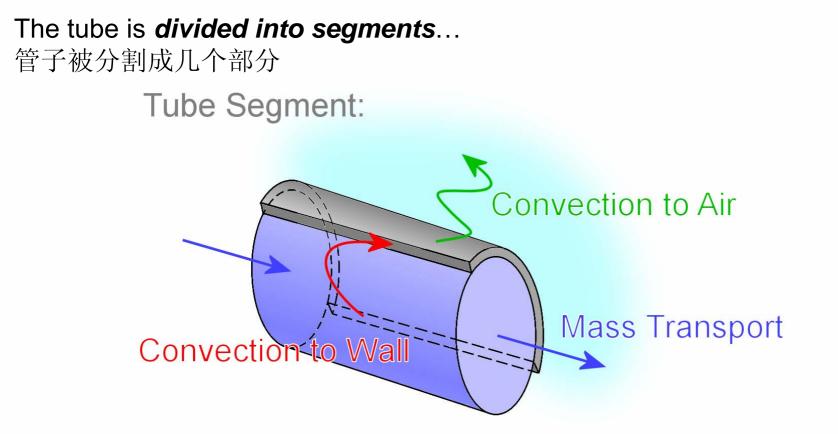
Transient Simulation of Tubes

Cabin Model

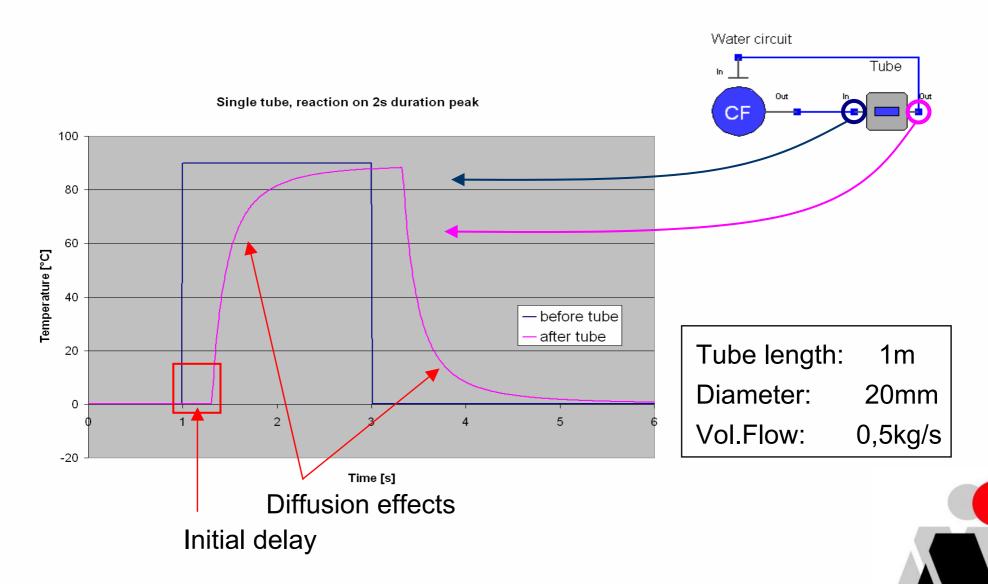
Transient Simulation with KULI and FASI

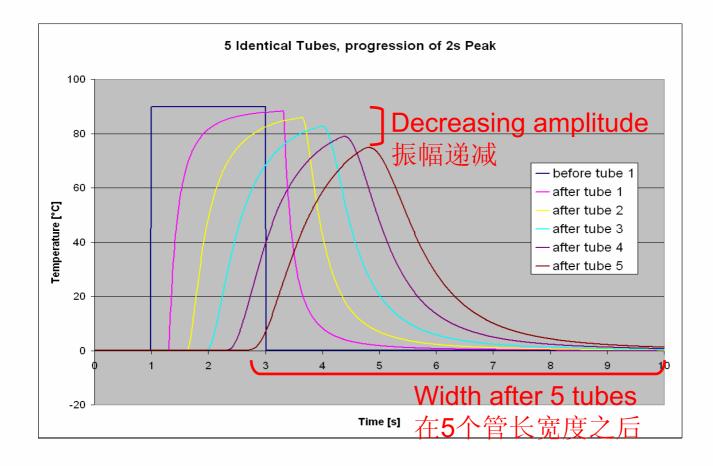
Conclusions and Outlook

- Total *Fluid in Tubes* 在管路中的流体 → *Thermal Capacity* 热容量
- Length of Tube 管路的长度 → Delay 延迟效应

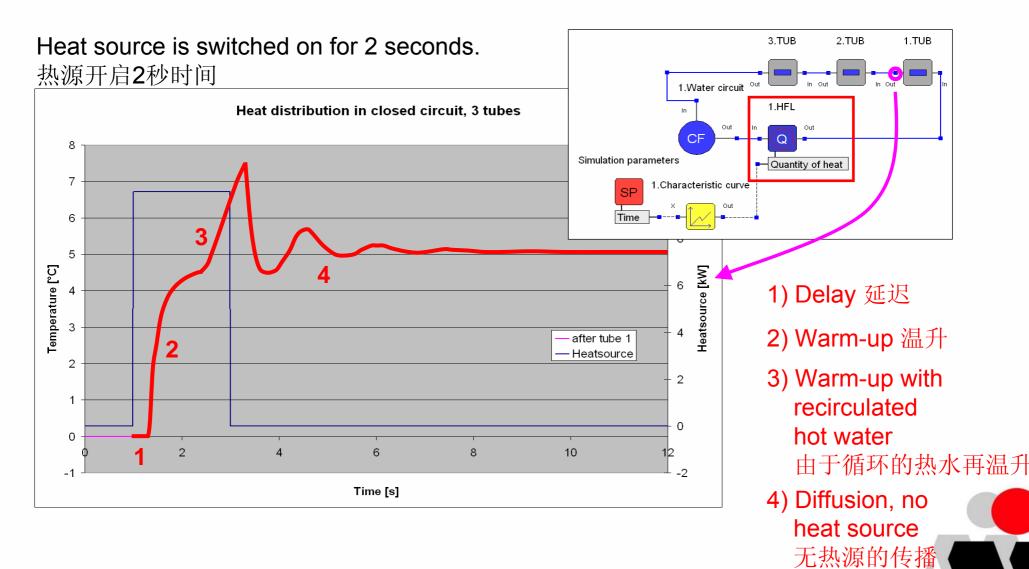

• Turbulences → Diffusion

Modelling a Tube




This leads to a *differential equation* again. 同样被构成微分方程

Transient delay and diffusion of a single tube



Same situation as before, this time 5 consecutive tubes. 同样的情形发生在 连续的5个管长之后

Closed Circuit

MAGNA POWERTRAIN

Contents

MAGNA POWERTRAIN

Introduction

Transient Applications and Requirements

Thermal Networks

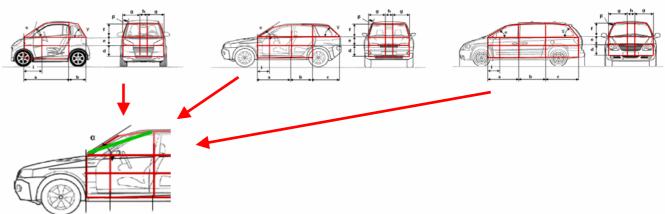
Engine Model

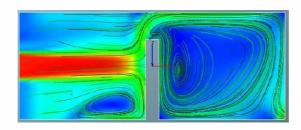
Transient Simulation of Tubes

Cabin Model

Transient Simulation with KULI and FASI

Conclusions and Outlook


Cabin Model - Workflow



 Select *type* 形式选择
 Define *geometry* 几何定义

3) Define *airflow* 空气流路

Boundary conditions & convection 边界条件 & 热对流

The cabin model can be used to answer questions like... 乘客舱模型可以用于解决如下问题......

- How long until the *driver* gets a *cool head in a hot car*?
 将驾驶员头部的温度冷却到一定温度需要多长的时间?
 → *multiple temperature zones 多温度场区域的划分*
- How to distribute the inlet airflow to *prevent uncomfortable air drafts*?
 如何合理分配空气流动以避免不适的设计?
 → *multiple air inlets 多风道入口设计*
- What is the influence of *ambient temperature* and *sunshine*? 环境温度以及日晒会造成怎样的影响?

→ wall and radiation models 壁面&辐射影响的考虑

Contents

MAGNA POWERTRAIN

Introduction

Transient Applications and Requirements

Thermal Networks

Engine Model

Transient Simulation of Tubes

Cabin Model

Transient Simulation with KULI and FASI

Conclusions and Outlook

Defining Transient Operating Points in KULI

Transient sequence of operating points: 瞬态工况的定义

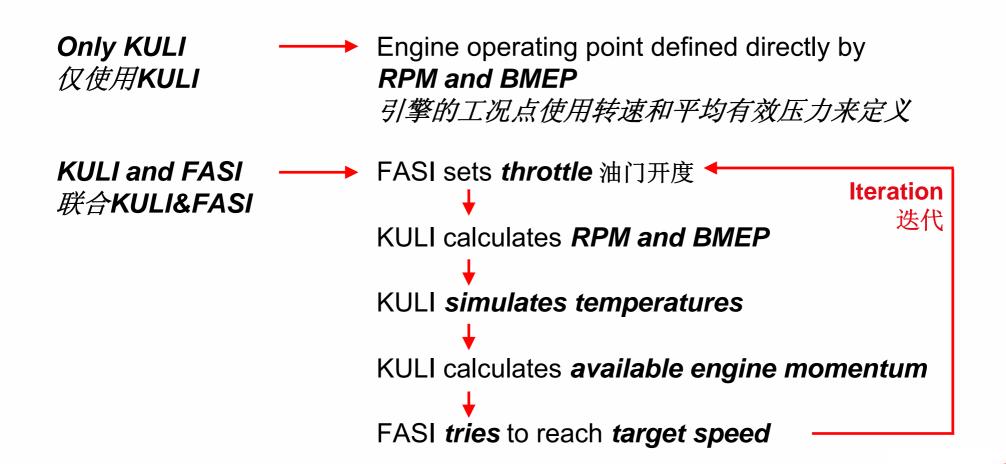
... for *different times* 对应不同的时间 ... different operating *conditions* can be defined 以及不同的工况点

Type C Steady state Transient C Driving simulation	ansient Ambie			s ing speed bient temperature bient air pressure		km/h *C hPa			
Ambient air pressure	1013	Time [s]	EngineRPM [rpm]	BMEP [bar]	Speed	Warm-up [K]	Amb.temp.	A/C on	
Air humidity [%]	50	1	2000	5	50	0	10	Off	-
at temperature [°C]	20	100	1500	3	30	0	10	Off	
at temperature [e]	100	500	3000	6	80	0	10	On	
		1000	3500	8	100	0	10	On	
Start time [s]	1							<u> </u>	
End time [s]	3000								
Time Step [s]	1								
Time Step Refr. Circuit [s]	1							$\left \right $	
								+	

Engine operating point 引擎工况

BMEP, Driving speed, Temperature offset underhood,

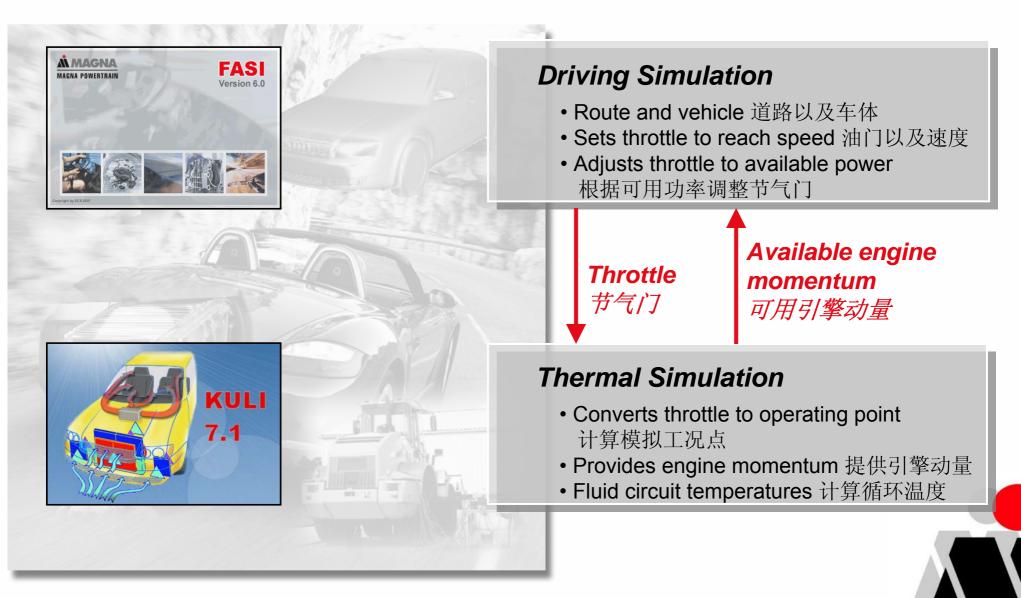
Ambient temperature,


AC status

Engine RPM,

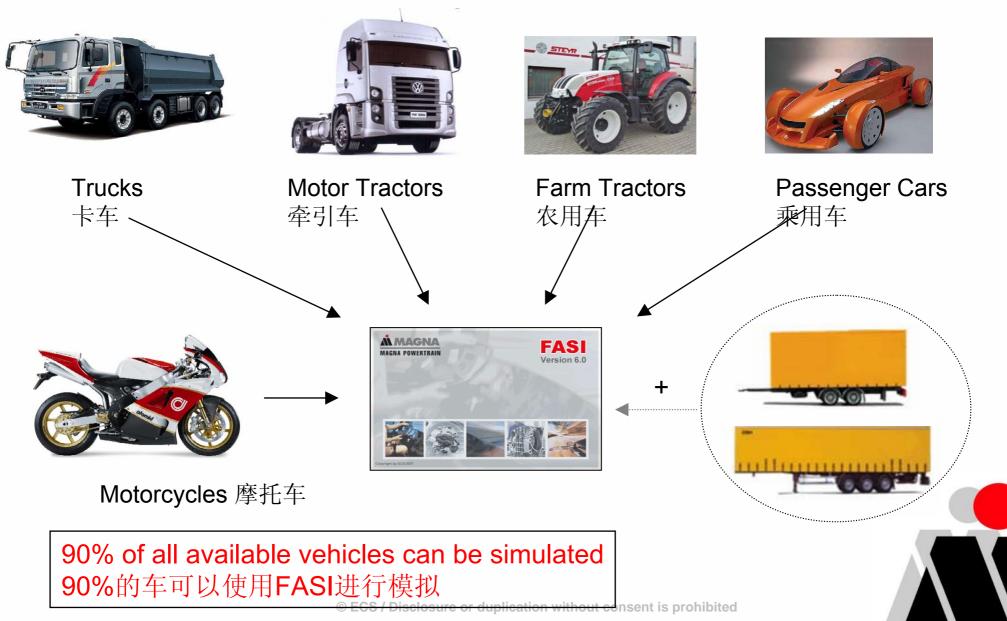
Air flow conditions 空气流动

Additional heat source 其它热源

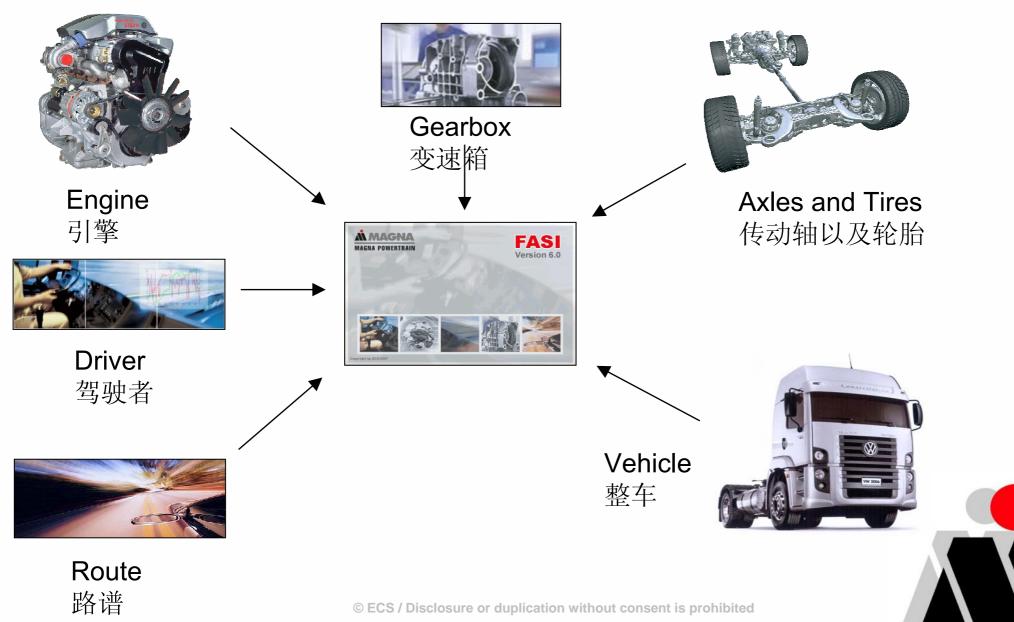


 $\ensuremath{\mathbb{C}}$ ECS / Disclosure or duplication without consent is prohibited

Coupling KULI and FASI



W. Dantendorfer


FASI Areas of Application

FASI Input Parameters

Typical Questions FASI

- Finding an optimal vehicle configuration
 寻找最佳的车辆配置
 - *Which gearbox* is optimal for my vehicle? 哪款变速箱最适合我的车型?
- **Saving fuel** and **reducing emissions** 减少油耗及排放

How are the energy flows distributed? 能量如何分配?

• Comparing the performance of different components 比较不同零部件的性能

What difference makes an improved engine? 改进引擎升级后的影响?

• Engine operating points for KULI 输出KULi所需要的引擎工况

Operating point at 30km/h and 12% ascent? 在30km/h, 12%坡度下的表现?

• Define *load statistics* 定义载荷统计

Dimensioning a rear axle 计算后轴

FASI operates as a stand alone program as well! FASI同样能够单独运行!

Contents

MAGNA POWERTRAIN

Introduction

Transient Applications and Requirements

Thermal Networks

Engine Model

Transient Simulation of Tubes

Cabin Model

Transient Simulation with KULI and FASI

Conclusions and Outlook

KULI and FASI cover a wide range of transient applications...

- Thermal Network
- Engine Model
- Transient Tubes
- Cabin Model
- KULI FASI Interface

Already available in KULI 7.1 Already available in KULI 7.1 New in KULI 8 (Summer 2008)

Improved in KULI 8 (Summer 2008)

New in KULI 8 (Summer 2008)

Thank you for your attention!

